e/Predicate functor logic

New Query

Information
has glosseng: In mathematical logic, predicate functor logic (PFL) is one of several ways to express first-order logic (also known as predicate logic) by purely algebraic means, i.e., without quantified variables. PFL employs a small number of algebraic devices called predicate functors (or predicate modifiers) that operate on terms to yield terms. PFL is mostly the invention of the logician and philosopher Willard Quine.
lexicalizationeng: Predicate functor logic
instance of(noun) (logic) a proposition that is not susceptible of proof or disproof; its truth is assumed to be self-evident
axiom

Query

Word: (case sensitive)
Language: (ISO 639-3 code, e.g. "eng" for English)


Lexvo © 2008-2025 Gerard de Melo.   Contact   Legal Information / Imprint